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Unimolecular evaporation of neon clusters containing between 14 and 148 atoms is theoretically investigated
in the framework of phase space theory. Quantum effects are incorporated in the vibrational densities of
states, which include both zero-point and anharmonic contributions, and in the possible tunneling through the
centrifugal barrier. The evaporation rates, kinetic energy released, and product angular momentum are calculated
as a function of excess energy or temperature in the parent cluster and compared to the classical results.
Quantum fluctuations are found to generally increase both the kinetic energy released and the angular
momentum of the product, but the effects on the rate constants depend nontrivially on the excess energy.
These results are interpreted as due to the very few vibrational states available in the product cluster when
described quantum mechanically. Because delocalization also leads to much narrower thermal energy
distributions, the variations of evaporation observables as a function of canonical temperature appear much
less marked than in the microcanonical ensemble. While quantum effects tend to smooth the caloric curve in
the product cluster, the melting phase change clearly keeps a signature on these observables. The microcanonical
temperature extracted from fitting the kinetic energy released distribution using an improved Arrhenius form
further suggests a backbending in the quantum Ne13 cluster that is absent in the classical system. Finally, in
contrast to delocalization effects, quantum tunneling through the centrifugal barrier does not play any appreciable
role on the evaporation kinetics of these rather heavy clusters.

I. Introduction

The quantum dynamics of many-body molecular systems
remains a major challenge in theoretical physical chemistry.
While the classical Hamilton equations of motion can be
accurately solved numerically for very large systems and over
long time scales, the solution of the time-dependent Schrödinger
equation is only available in low dimensions.1 Practical schemes
to address the quantum dynamics include time-dependent self-
consistent field and configuration interaction,2 multiconfigura-
tional extensions,3 path-integral based methods such as centroid4

and ring-polymer5 molecular dynamics, coherent state expan-
sions,6 Bohmian methods,7,8 and related schemes9 as well as
Gaussian variational wave packets.10-12 Some methods such as
ab initio multiple spawning13 or multiconfigurational nuclear-
electronic orbital14 have been designed to address vibrational
and electronic degrees of freedom on a common quantum
mechanical ground. For moderately quantum systems or for
hybrid quantum/classical systems, perturbative methods,15 and
other semiclassical approaches have been proposed.16-21 The
relative merits of these different methods are discussed in review
articles.22 Several of them, such as those based on path integrals,
are specifically appropriate for condensed matter problems,
because they are naturally formulated in the canonical ensemble
of statistical mechanics.23 Gas-phase systems, on the other hand,
are better described at constant total energy. The zero-point
energy constrained trajectory method of Bowman, Miller, Keyes,

and co-workers,24-26 which extends the quasiclassical trajectory
model27 and has been subsequently improved by various
authors,28-31 becomes numerically involved in high-dimensional
systems and vulnerable to instabilities in anharmonic regions.
Unfortunately, the more rigorous wave packet propagation
schemes also suffer heavily from such problems, as discussed
in detail by Buch in the case of Gaussian variational wave
packets.12

The thermal fragmentation of an isolated atomic cluster is
a typical situation involving strong anharmonicities, long time
scales, and whose description clearly pertains to the micro-
canonical ensemble: except in the limit of large systems,
evaporative cooling is expected to change significantly the
cluster temperature upon dissociation. Fragmentation is a very
important process in the physics and chemistry of clusters,
as it gives access to many fundamental properties ranging
from binding energies32 to temperatures33,34 and even entire
caloric curves.35,36 Statistical theories play a key role in
interpreting such experimental measurements. However, these
theories usually contain adjustable parameters, and their
reliability is very difficult to assess based on experiment only.
Molecular dynamics simulations can be carried out in
classical systems that can be modeled using explicit potential
energy surfaces.37-40 From these “numerically exact” calcula-
tions, theories based on the microreversibility principle were
shown to be quite accurate for predicting dissociation related
properties, namely kinetic energies released (KERs), angular
momentum, and their probability distributions, as well as rate
constants.39-42 These approaches, particularly the orbiting
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transition state version of phase space theory (PST),43-47 can
also be expressed for quantum systems, as was originally
proposed in chemical reaction kinetics.43,44 However, their
application to polyatomic systems becomes combinatorially
cumbersome due to the difficulty of calculating rotational
and vibrational densities of states in high-dimensional
manifolds. Interestingly, strongly quantum systems such as
helium droplets could be treated using dedicated, fluidlike
approximations owing to the loss of geometric structure.48,49

Moderately quantum systems have also been investigated
through statistical theories using ad hoc semiclassical cor-
rections on top of classical calculations.40

Neon clusters are expected to have a significant quantum
character. This is for instance indicated by the de Boer parameter
Λ ) pσ/(mε)1/2 ≈ 0.1, which quantifies the extent of quantum
delocalization based on the atomic mass m, the equilibrium
distance σ, and well depth ε of the interaction potential.
Quantum effects in neon clusters have been illustrated on the
frequent changes in stable structures due to zero-point vibrational
motion9,50,51 and on the depression on the melting point.50,52-56

In condensed phases, quantum effects also alter structural and
dynamical properties to an appreciable amount.57,58 The present
work focuses on evaporation kinetics of medium-size neon
clusters, for which we have chosen a purely statistical PST
description rather than an explicit but problematic dynamical
modeling. We build here upon the success of the PST framework
in reproducing atomistic results in classical clusters of similar
complexity39-41 and make the assumption that phase space
theory will be sufficiently accurate for addressing the quantum
clusters as well. Our incorporation of quantum effects within
PST is 2-fold. Vibrational densities of states are calculated using
the superposition approximation,50,59 which takes into account
both intrabasin anharmonicities and the fluxional character of
the clusters, as well as quantum delocalization and zero-point
energies. Tunneling, though neglected in the evaluation of
vibrational densities of states, is included semiclassically in the
calculation of the rotational densities. Our results show a strong
influence of quantum delocalization on evaporation related
observables, which cannot be captured by simple quantum
corrections to the classical theory. In particular, the very few
vibrational states available at low excess energy lead to an
increase in both the kinetic energy released and the angular
momentum of the product cluster. However, the picture
somewhat changes when temperature is chosen as the control
variable, quantum effects generally decreasing down to being
minor corrections. Yet, the melting phase change in the product
cluster keeps a clear signature on the dissociation properties in
the quantum case, with the expected depression in the melting
point.

The article is organized as follows. In the next section, the
main elements of phase space theory that are relevant to the
present system are briefly described, along with the methods
employed to compute the quantum densities of vibrational and
rotational states. The application to neon clusters is presented
and discussed in section III, with a special emphasis on the Ne14

parent, for which we were able to quantify the importance of
anharmonicities. Larger clusters containing 56 and 148 atoms
are also considered but at the simpler harmonic level. We finally
summarize and give some concluding remarks in section IV.

II. Methods

Our theoretical modeling of cluster evaporation is based on
phase space theory in its orbiting transition state version, and
follows the lines of Chesnavich and Bowers47 in their treatment

of angular momentum constraints. However, for the sake of
simplicity we will assume that the parent cluster is nonrotating.
For the unimolecular evaporation Nen+1f Nen + Ne, we denote
by E0 the dissociation energy, which possibly includes a zero-
point contribution, and E the excess energy of the parent Nen+1.
For each evaporation event, the translational and rotational
kinetic energies of the product cluster, as well as their sum, are
denoted as εt, εr, and εtr, respectively. The product angular
momentum Jr exactly compensates the orbital momentum L.
Neon clusters are modeled using a simple pairwise Lennard-
Jones (LJ) potential with well depth 35.8 K and distance
parameter σ ) 2.75 Å. In the following, atomic units are used
throughout unless specified otherwise.

A. Phase Space Theory for Classical and Quantum
Clusters. The orbiting transition state version of phase space
theory assumes that the dissociation products are the transition
state.47 The probability that an evaporation event at excess
energy E releases the kinetic energy εtr is given by the
differential rate R(E,εtr),

where Ωn(E) is the density of vibrational states of cluster Nen

at excess energy E above the zero-point reference energy, Γ(εtr)
is the density of rotational states of the products, that is, the
number of rotational states compatible with energy and angular
momentum constraints for a given kinetic energy released. The
factor g is a so-called channel degeneracy factor,39 which is
taken here as one for simplicity. Degeneracies arising from the
symmetries of the product and parent clusters are implicitely
included in the absolute densities Ωn(E). Treating kinetic
energies released as continuous variables (even though angular
momentum may be treated as a multiple integer of p), the
evaporation rate constant k(E) is the sum of the differential rate
over all possible values of εtr and is expressed in the more
familiar form k(E) ) W(E)/hΩn+1(E), with W(E) the sum of
states at the (loose) transition state

The equilibrium probability distribution P(E,εtr) of the total
(translational + rotational) KER and the average value 〈εtr〉(E)
are given by39

and

respectively. The purely translational KER distribution, Pt(E,εt),
can also be calculated using the PST formalism, following an
expression first obtained by Klots, by an integration over all
possible values of the rotational energy εr as45

R(E,εtr) )
gΩn(E - E0 - εtr) Γ(εtr)

hΩn+1(E)
(1)

W(E) ) ∫0

E-E0 Ωn(E - E0 - εtr)Γ(εtr) dεtr (2)

P(E,εtr) ) R(E,εtr)/ ∫0

E-E0 R(E,εtr) dεtr (3)

〈εtr〉(E) ) ∫0

E-E0 εtrP(E,εtr) dεtr (4)

Pt(E,εt) ∝ ∫0

εr
max

Ωn(E - E0 - εt - εr)
∂Γ
∂εr

dεr (5)
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Here we have denoted εr
max the maximum value of the rotational

energy available due to angular momentum constraints. Whereas
the absolute rate constant k(E) depends on the properties of both
the parent and product clusters, the distributions of kinetic
energies released are functions of the product properties only.
This is valuable, because absolute densities of vibrational states
are not easy to calculate.39,60 Probability distributions and
averages thus offer a much more convenient test of the role of
quantum effects on the dissociation observables. The main tasks
consist now in estimating the key ingredients entering the above
equations, namely the vibrational and rotational densities of
states, for both quantum and classical systems. Specific methods
have been employed for these two quantities, and they are
detailed below.

B. Densities of Vibrational States. Densities of vibrational
states can be quite conveniently obtained for multidimensional
classical systems using a combination of simulation methods,
and in the present work we have used standard exchange Monte
Carlo simulations followed by histogram reweighting.61 This
method only provides state densities to within an unknown
factor, and to determine the absolute densities, this factor was
adjusted to recover the harmonic limit Ωn

HC(E) at low energy:

Here we denoted ωj n the geometric average of the vibrational
frequency taken at the ground state structure (global minimum),
and Sn a factor which accounts for distinguishable permutation-
inversion isomers corresponding to stationary points with the
same structure. If on denotes the order of the point group, then
Sn ) 2n!/on.

The above method was used to calculate numerically the
density of vibrational states of the clusters Ne13 and Ne14. The
exchange Monte Carlo simulations were carried out using 50
replicas in the canonical ensemble, with a geometric progression
for the temperature ladder in the range 0.3-18 K. A rigid wall
container with radius 2.5σ was implemented to keep the atoms
connected.

This procedure does not apply for quantum systems. Whereas
path-integral techniques or quasiclassical effective potentials62

can be fruitfully used to sample the canonical thermodynamical
properties, densities of vibrational states are much more difficult
to calculate in general. Inverse Laplace transformation of the
partition function remains plagued with numerical problems.63

Several approximate schemes have been designed to include
quantum delocalization as a correction to classical results.64-67

A particularly popular such scheme is the Pitzer-Gwinn (PG)
approximation,68 which consists of decoupling quantum effects
from anharmonicities, by writing the quantum anharmonic
partition function Qq,a as the product of a quantum but harmonic
function Qq,h with an anharmonic but classical function Qc,a,
together with a normalizing harmonic classical function Qc,h:

The PG method has been used previously as an empirical way
of correcting for quantum effects in the caloric curves of
clusters,69 and it can also be formulated in the microcanonical
ensemble.70,71 The latter method has been used by Peslherbe
and Hase40 in the context of unimolecular dissociation.

Alternatively, equilibrium properties can be estimated by
superposition over many isomers.72 This superposition approach
is formally exact in classical systems, where the configuration
space can be entirely partitioned into basins of attractions, and
it has been successfully used for describing atomic clusters,59,73,74

model glass formers75 and, more recently, biomolecules.76 In
the quantum case, the superposition approach neglects tunneling
but accounts for zero-point effects.50 In its harmonic version,
and contrary to path-integral based methods, it is also expected
to be more accurate at very low temperatures. The superposition
method is used here in the microcanonical ensemble, where it
readily yields an estimate of the density of vibrational states
Ωn(E) from a known set of minima {R}:50

in which Ωn
(R) denotes the density of vibrational states of isomer

R, ER is its minimum energy including the zero-point energy
contribution, and Θ is the Heaviside step function. For separable
systems, Ωn

(R)(E) can be obtained by direct counting using the
Beyer-Swinehart algorithm.77 Fully coupled anharmonic sys-
tems, on the other hand, require numerical quadrature, e.g.,
through Monte Carlo methods.78-80 At the harmonic level, the
quantum superposition approximation already performs semi-
quantitatively with respect to more accurate path integral
calculations.50 For instance, the depression in the melting point
of Ne13 due to quantum delocalization is correctly estimated to
be about 1 K.50 However, because evaporation takes place at
high energies, anharmonicities are expected to be very important
in dissociation properties.

Application of the quantum superposition method was made
using a nearly exhaustive database of 1509 isomers for Ne13,
but only a restricted sample for Ne14. In the latter case,
accounting for the missing isomers can be achieved by re-
weighting of the available minima50,59 at the price of a new factor
wn

(R) in eq 8. The original procedure, introduced by Wales for
classical systems,59 also applies to the quantum superposition
approximation.50 For all minima of both Ne13 and Ne14, the
vibrational frequencies {ωR

(i)} were obtained by diagonalization
of the dynamical matrix, and anharmonic corrections were
included empirically within a Dunham quadratic expansion.
More precisely, the discrete energy levels of isomer R are
expressed as a function of the quantum numbers {ni} as

κ ) 3n - 6 being the number of vibrational degrees of freedom
and �R

(i) the anharmonic coefficient of mode i. The problem was
further simplified by assuming that �R

(i) only depends on the
minimum, but not on the frequencies, and only four values were
used depending on the rank R. The global minimum structure
(rank 1) was given a coefficient �1, whereas the other isomers
were arbitrarily divided into groups of 10, 100, and all remaining
isomers, with coefficients �2, �3, and �4, respectively. These
coefficients were then adjusted to reproduce the accurate heat
capacities obtained for Ne13 by Frantsuzov and Mandelshtam
using the imaginary time variational Gaussian wavepacket
(GWP) method.82 A similar procedure was followed for Ne14.83

After the error minimization problem was solved numerically,

Ωn
HC(E) ) Sn

E3n-7

(3n - 7)!(pω̄n)
3n-6

(6)

Qq,a =
Qq,h × Qc,a

Qc,h
(7)

Ωn(E) ) ∑
R

Sn
(R)Ωn

(R)(E - ER)Θ(E - ER) (8)

E ) ER + ∑
i)1

κ

pωR
(i)(ni +

1
2) + ∑

i)1

κ

ωR
(i)�R

(i)(ni +
1
2)2

(9)
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the quantum densities of states were determined as a function
of energy using eq 8, with individual densities Ωn

(R)(E) obtained
using the Beyer-Swinehart method.77

The absolute classical and quantum densities of vibrational
states are illustrated in Figure 1 for the Ne13 cluster. For the
classical system, the linear region marks the onset of the
solid-liquid phase change, but such behavior is not clearly seen
in the quantum system, where fluctuations dominate at low
energies. The reliability of quantum density of states is better
examined on the canonical heat capacity obtained from the first
two moments of energy, 〈Ep〉 with p ) 1 or 2, after Laplace
transformation:

The agreement between the superposition result and the GWP
data is very good, but of course not fortuitous. Comparing with
the results previously obtained using the superposition method,
but with phenomenological anharmonic corrections,50,84 we find
a much better match, especially at low and high temperatures,
away from the melting peak. We also show in the inset of Figure
1 the predictions of the Pitzer-Gwinn method for the same
cluster. Here the classical anharmonic partition function Qc,a

was taken from the classical exchange Monte Carlo simulation,
and the ratio Qq,h/Qc,h was calculated using the superposition
approximation for both quantum and classical functions. As can
be seen from Figure 1, the quantum corrections arising from
this method are far unsufficient to reproduce the reference heat
capacity. Due to this rather deceptive result, the Pitzer-Gwinn
scheme was not given further attention in the present work.

C. Rotational Densities of States and Product Angular
Momentum. The rotational densities of states Γ(εtr) entering
the PST equations account for the number of states in phase
space that are compatible with energy and angular momentum
constraints. The total kinetic energy released εtr is partitioned
into its rotational εr and translational εt components, and we
denote by Jr the angular momentum of the product cluster after
unimolecular evaporation. For the present icosahedral clusters,

the product can be safely considered as spherical, and we denote
by B its rotational constant. We restrict here to nonrotating
parent clusters, hence the orbital momentum of the reaction
exactly compensates Jr.

In classical systems, the translational energy must exceed
a centrifugal barrier ε† arising from orbital momentum.
Assuming a simple radial dissociation potential of the form
V(r) ) -C6/r6, the height of the centrifugal barrier is ε†(Jr)
) Jr

3/Λ with the parameter Λ ) (6 µ)3/2C6
1/2/2. We neglect

here some possible corrections due to the finite extent of the
product cluster, which could be represented by introducing
the radius r0 such that39 V(r) ) -C6/(r - r0)6 or the more
tractable form85 V(r) ) -C6/r2(r2 - r0

2)2. Taking r0 ) 0, the
corresponding maximum rotational energy available at fixed
translational energy εt in eq 5 reads εr

max(εt) ) εt
2/3/Λ. For a

given evaporation event, the maximum angular momentum
Jr

max allowed is such that

which must be solved numerically depending on εtr. For a
spherical product, each value of Jr has a 2Jr rotational
degeneracy, and the density of rotational states reads39,47

In quantum systems, Jr becomes a quantum number and a
simple semiclassical quantization is performed, rotational
energies are expressed as BJr(Jr + 1) rather than BJr

2. This
also affects the centrifugal barrier ε†(Jr), which now is
[Jr(Jr + 1)]3/2/Λ. Only multiple values of p are considered for
Jr, including Jr

max. The rotational density is written as a discrete
sum:

Quantum effects also indirectly enter the previous expressions,
through the values of the rotational constants.

1. Rotational Constants. The shapes of the parent and
product clusters at their most stable configuration poorly reflect
their actual value when dissociation takes place. Temperature
leads to strong deformations, which for the present clusters can
be simply estimated from Monte Carlo simulations. Effective
rotational constants have been determined as their statistical
average during constant-temperature MC simulations, using the
simple definition based on the arithmetic average of the principal
momenta of inertia I1, I2, and I3:

These effective constants have been obtained for the classical
cluster during the same exchange Monte Carlo simulation that
was used to calculate the anharmonic densities of states of the
product cluster.

In the quantum case, we have performed additional exchange
Monte Carlo simulations, but with a modified potential energy
surface including quantum corrections based on the quadratic
Feynman-Hibbs potential.62 This approach was previously

Figure 1. Absolute densities of vibrational states for the Ne13 cluster,
assuming classical or quantum statistics with full anharmonicities. Inset:
canonical heat capacities for the quantum system inferred from the
displayed density of states (SA), compared with the predictions of the
variational Gaussian wavepacket (GWP) method and with the results
of the Pitzer-Gwinn (PG) method.

〈Ep〉(T) ) 1
Z(T) ∫EpΩn(E) exp(-E/kBT) dE (10)

Z(T) ) ∫Ωn(E) exp(-E/kBT) dE (11)

εtr ) B(Jr
max)2 + ε†(Jr

max) (12)

Γ(εtr) ) ∫0

Jr
max

2Jr dJr ) (Jr
max)2 (13)

Γ(εtr) ) ∑
Jr)0

Jr
max

(2Jr + 1) (14)

〈B〉(T) ) 〈( 1
2I1

+ 1
2I2

+ 1
2I3

)/3〉 (15)
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shown50 to give thermal equilibrium properties in good agree-
ment with path-integral methods.

In addition to these direct approaches, we have also computed
the effective rotational constants using the superposition method
in the canonical ensemble. The effective rotational constant is
then the sum of all isomer-dependent values, BR(T), weighed
by the canonical partition function of the isomers.74 Temperature
effects on the rotational constant of each isomer are included
only through a harmonic approximation, whereas the individual
Boltzmann weights incorporate the same anharmonic corrections
as used in the microcanonical densities of states. Expressions
for the thermally averaged rotational constant BR are given in
the Appendix. In particular, these expressions for the quantum
system account for a shift in the ground state 0 K structure due
to zero-point effects.

The thermally and isotropically averaged rotational constants
resulting from these simulations and from the superposition
calculations are represented in Figure 2 for the Ne13 cluster.
The steady decrease at low temperatures marks the thermal
expansion of the cluster, and the soft melting near 9-11 K
further leads to a drop in the rotational constant due to the
appearance of disordered but more extended structures. In the
liquid state, temperature effects approximately results in a 15%
decrease in the rotational constant, while quantum effects
contribute to another 10%.

The rotational constants obtained by MC simulation are in
rather good agreement with the calculations from the superposi-
tion method. The location of the melting temperature, in
particular, is well reproduced, which is attributed to the correct
account of anharmonicities in the partition functions. Some
deviations in the slope of 〈B〉(T) are found above the melting
point, likely due to the neglect of these anharmonicities in the
calculation of BR(T). From Figure 2, we chose to take effective
rotational constant of the product cluster as the value at a
meaningful temperature, close to the melting point, and to
neglect higher-order effects due to the temperature variation of
these constants. This approximation will be justified below.

2. Tunneling through the Centrifugal Barrier. The classical
restraint Jr e Jr

max does not apply in quantum systems, where
the dissociating atom may have tunneled through the centrifugal
barrier. Tunneling effects on dissociation and scattering have
been mainly studied in the context of ionic fragmentation.86,87

Here a semiclassical WKB approximation88 is used to estimate
the probability of tunneling events as

with the phase integral θ defined by

and where r1 and r2 denote the lower and upper limits of the
radial distance r compatible with the integrand existence.
Translational energies, though not quantified, impose BJr(Jr +
1) e εtr. The quantum density of rotational states is then
corrected accordingly from eq 14 to allow for angular momenta
higher than Jr

max as

In practice, and following the work of Larregaray and co-
workers,89 integration is stopped at high values of Jr such that
�(εtr,Jr) < 10-3. Likewise, eq 5 must be corrected by a second
integral over rotational energies higher than εr

max, but lower than
E - E0 - εt, and containing the tunneling factor.

The rotational densities of states have been calculated for
the Ne13 + Ne system, treating Ne13 as a spherical top with
rotational constant as discussed in the previous subsection. The
variations of Γ with kinetic energy released are represented in
Figure 3 for the classical and quantum cases, with a special
attention to the tunneling correction to eq 14. The classical
density smoothly increases, and approximately varies with εtr

as Γ(εtr) = εtr(1 - aεtr
b)/Br. The two coefficients a and b are

given by a low-order perturbative expansion of eq 12 as a )
(ΛB3/2)-1 and b ) 1/2. In particular, the large εtr behavior of Γ
∼ εtr/B converges to the well-known result obtained by Klots
for atom + nonlinear polyatomic reactions.90 The quantum
density displays some discrete structure, which essentially
follows (but lies above) the classical density. The discrete
character reflects that Jr/p can only take integer values, new

Figure 2. Thermally averaged rotational constant of the Ne13 cluster
obtained as a function of temperature from classical and quantum-
corrected Monte Carlo simulations. Predictions of the harmonic
superposition method are also shown.

�(εtr,Jr) ) [1 + exp 2θ(εtr,Jr)]
-1 (16)

θ(εtr,Jr) )
2π
p

×

∫r1

r2 [2µ(Jr(Jr + 1)

2µr2
-

C6

r6
+ BJr(Jr + 1) - εtr)]1/2

dr

(17)

Γ(εtr) ) ∑
Jr)0

Jr
max

(2Jr + 1) + ∑
Jr>Jr

max

�(εtr,Jr)(2Jr + 1)

(18)

Figure 3. Rotational density of states for the evaporation of an atom
from Ne14, treating the Ne13 product as a spherical top. The quantum
results, which allow for or neglect tunnelling through the centrifugal
barrier, are also shown besides the classical result.
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steps in Γ appearing at values of εtr where Jr
max itself becomes

a multiple of p. The 10% difference in rotational constants used
in these two calculations, as inferred from Figure 2, has a
marginal influence on the rotational densities, hence our choice
to neglect the variations of B with internal energy in the product
cluster.

Taking now tunneling effects into account, the rotational
density shows more continuous variations just before Jr

max

increases by one p, because the phase integral is low in
magnitude only in this vicinity. Despite these qualitative
differences, the quantum rotational density seems poorly altered
by tunneling.

3. Product Angular Momentum. Phase space theory provides
useful insight into the angular momentum of the product cluster,
and performs equally well against classical simulations as for
energetic properties.40,41 The unnormalized probability distribu-
tion that a dissociation event leaves a product cluster with
angular momentum Jr is41

for a classical system. Here we have denoted εtr
min ) BJr

2 +
ε†(Jr) the minimum rotational energy compatible with energy
and angular momentum constraints.

The corresponding quantum expression is modified in two
ways, namely, the discretization of Jr (associated with the
semiclassical replacement of Jr

2 by Jr(Jr + 1) in rotational
energies), and the contribution of tunneling through the cen-
trifugal barrier. The latter effect allows kinetic energies released
to lie below εtr

min through the weighting function �:

Note again that εtr can never be lower than BJr(Jr+1) even when
tunneling is included; hence the first integral in eq 20 generally
has a very narrow range.

The above expressions are used below to calculate the
statistical average 〈Jr〉 of the distributions in the classical and
quantum regimes.

III. Results and Discussion

Phase space theory has been used to calculate the absolute
evaporation rates, the average (rotational + translational) kinetic
energy released, and the average product angular momentum
as a function of excess energy in the parent cluster. Temperature
turns out to be a complementery control parameter to unravel
the specific quantum effects, and it will be discussed as well,
especially in the case of larger clusters for which the calculations
were restricted to harmonic models.

A. Energy-Resolved Evaporation in Ne14. We first consider
the case of unimolecular evaporation in Ne14, for which
anharmonic densities of states have been determined for both
the classical and quantum systems using the methods described
in section II. Harmonic calculations have also been carried out
for comparison. Here and in the following, the harmonic
approximation means that only the lowest-energy structure was
considered in the evaluation of vibrational state densities.

The variations of k, 〈εtr〉, and 〈Jr〉 with excess energy E are
represented in Figure 4. For the classical case, the rate constant
and average KER show comparable behavior, as obtained
previously for argon by Weerasinghe and Amar.39 The general
behavior of these properties is strongly affected by the quantum
or classical treatment, especially at low energies. For instance,
the classical rate can take arbitrarily low values and diverges
when E reaches the dissociation energy E0 from above. In
contrast, the sum of states W(EfE0) is limited by the vibrational
density being always higher than 1/120 (corresponding to the
point group of the highest possible symmetry, namely icosa-
hedron) except when it is strictly zero, as in forbidden states.
Classical densities and sums of vibrational states also grow faster
with energy than their quantum counterparts, and this reflects
on the evaporation rates. This explains why the quantum rates
are generally higher than the classical rates at low energies,
while they become lower at high energies.

Anharmonicity primarily affects the high-energy variations,
and the rates are essentially close to the harmonic value near
the dissociation threshold. However, anharmonicities have a
much larger influence in the quantum case, as judged from the
three properties considered here: the deviations from harmonic

Pr(Jr;E) ) 2Jr ∫εtr
min

E-E0 Ωn(E - E0 - εtr) dεtr (19)

Pr(Jr;E) ) (2Jr + 1)×

[∫BJr(Jr+1)

εtr
min

�(εtr,Jr) Ωn(E - E0 - εtr) dεtr

+∫εtr
min

E-E0 Ωn(E - E0 - εtr) dεtr] (20)

Figure 4. Predictions of phase space theory for the unimolecular
evaporation of Ne14 into Ne13 + Ne as a function of internal energy,
assuming quantum or classical treatments, and harmonic or anharmonic
vibrational state densities: (a) evaporation rates; (b) average kinetic
energy (translational + rotational) released; (c) average angular
momentum of the product cluster.
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behavior are seen at excess energies above about 300 cm-1 in
the classical system, but both 〈εtr〉 and 〈Jr〉 deviate from their
harmonic limit already a few wavenumbers above E0. A
significant difference between the classical and quantum curves
lies in the qualitative effects of anharmonicity, which signifi-
cantly increase the dissociation rate only in the quantum case.
The decrease found in classical systems is consistent with the
previous study by Weerasinghe and Amar.39 We believe that
this marked difference may come from some unsufficient
sampling of the landscape of Ne14 with the superposition
method, which despite reproducing the reference heat capacity
does contain some errors in the estimated weights wn

(R). However,
the two harmonic results, where only the lowest-energy isomer
is taken into account in the vibrational density of states, also
show a strong difference that cannot be explained by sampling
issues. This emphasizes that the interplay between quantum and
anharmonicity effects is probably more subtle for these neon
clusters than it is for more semiclassical systems such as
aluminum clusters.40 More generally, the results of Figure 4
suggest that these statistical observables are highly sensitive to
the details of the vibrational densities, especially their strong
fluctuations in the low-energy quantum regime. On a side note,
the quantum anharmonic and classical harmonic results are
found to be very similar for both the average KER and angular
momentum. This fortuitous agreement only reflects some
compensation between zero-point and anharmonic effects, which
tend to increase and decrease, respectively, these two quantities.

The melting transition in the product cluster has clear
signatures on all the three observables, not only in the classical
cluster (near E ≈ 450 cm-1 excess energy) but also in the
quantum cluster (near E ≈ 200 cm-1). This further emphasizes
the interplay between thermal equilibrium properties and
dissociation properties.39 The reduced melting energy found in
the quantum case is consistent with previous studies in the
canonical ensemble,52-56 even though it will be more clearly
evidenced when temperature is chosen as the control variable
(see below).

The average KER and product angular momentum are
significantly higher in the quantum system. This is a manifesta-
tion of the scarcity of vibrational states at low energies above
the dissociation limit, low kinetic energy values becoming
quantum mechanically forbidden in the integrals of eqs 4 and
5. This pure microcanonical effect is imposed by total energy
constraints and can also be seen on the translational KER
distributions. Figure 5 shows a typical such distribution at a

moderate excess energy E - E0 ) 125 cm-1. At this energy,
quantum fluctuations have a major influence on energy distribu-
tions, whereas the classical distribution shows an expected
smooth, Boltzmann-like shape. Even though translational ener-
gies are not explicitly quantified in our model, both vibrational
and rotational energies are, and Figure 5 retains some signature
of the ruggedness of the product vibrational density. The much
broader support of the quantum distribution, which extends over
20 wavenumbers at half-width (versus about 8 cm-1 in the
classical case), again illustrates the very low number of available
vibrational states in the quantum case: most of the excess energy
is converted into translational and rotational kinetic energies
between the two products Ne13 and Ne.

The quantum mechanical treatment of phase space theory
leads to important differences with the classical description for
all properties considered so far. These differences are essentially
caused by the low-energy fluctuating parts of the vibrational
densities of states, which could not be captured by semiempirical
corrections such as those based on the Pitzer-Gwinn ap-
proximation. They also convey a strong contrast between the
microcanonical ensembles of the classical and quantum systems.
This may be misleading in the case of gas-phase experiments
on clusters which are often thermalized in a heat bath before
being released into vacuum for selection and detection.

B. Temperature-Resolved Evaporation in Ne14. All statisti-
cal properties O(E) computed as a function of total energy have
been recalculated for parent clusters in contact with a thermostat,
using the appropriate Laplace transform of the microcanonical
quantities with the parent density of states similar to eqs 10
and 11. The results of numerical quadratures are shown in Figure
6 for the Ne14 cluster described classically and quantum
mechanically, assuming harmonic or anharmonic vibrational
densities. The transformation into canonical properties has the
immediate consequence of washing out low-energy quantum
fluctuations. The quantum and classical values are now much
closer to each other for the rates, the average KER and product
angular momentum. The remaining signatures of quantum
effects are found at low temperature as the nondiverging rate
constants and much softer increases in 〈εtr〉 and 〈Jr〉. These latter
variations mimic the softer behavior of the quantum caloric
curve of the cluster, further indicating how equilibrium proper-
ties have imprints in dissociation observables also in the
canonical ensemble.39 In particular, the melting transition found
near 10 K (classical system) and 9 K (quantum system, see the
inset of Figure 1) occurs through inflections in the dissociation
rate and the average KER close to these temperatures. However,
with respect to the microcanonical case, anharmonicities now
have a rather reduced impact, even in the classical cluster. This
behavior results from the conjunction of two factors. First, the
thermal distributions are broader and extend to higher energies
in the anharmonic case. Second, the considered observables
increase with energy in the microcanonical ensemble. Upon
canonical averaging, anharmonic observables are much higher
when anharmonicities are included.

Phase space theory provides the distributions of kinetic
energies released and angular momenta of the product and can
be straightforwardly used to estimate the vibrational energy εv

remaining in the product after dissociation. Since εv ) E - E0

- εtr, the microcanonical probability of finding εv is simply
proportional to Ωn(εv) × Γ(E - E0 - εvib). The distributions of
vibrational energy in the Ne13 product after unimolecular
dissociation are represented in Figure 7, for a parent Ne14 cluster
assumed to be thermalized at 10 K, and with anharmonic
vibrational densities. On this figure we also represented the

Figure 5. Distribution of translational kinetic energies released upon
evaporation of Ne14, at a fixed excess energy of 125 wavenumbers above
the dissociation limit, assuming a quantum or a classical description,
with anharmonic state densities.
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corresponding thermal energy distributions in the parent at this
same temperature. These distributions have comparable widths,
but their centers differ due to many vibrational degrees of
freedom being poorly occupied in the quantum case. This
manifestation of strong delocalization, even at such a moderate
temperature, can be seen on the distribution of vibrational
energies in the product cluster. However, the quantum curve
surprisingly shifts by 50 wavenumbers toward higher energies
with respect to the parent distribution, whereas the classical
distribution does not change much. This peculiarity suggests
some evaporative heating, as was recently found in a theoretical
study on classical 55-atom rare-gas clusters.42 It is then a strong
indication of a backbending in the microcanonical caloric curve
of the quantum cluster, while the classical LJ13 cluster is known
not to exhibit such a behavior.

C. Temperature from the KER Distribution. The connec-
tion between dissociation observables and equilibrium thermo-
dynamical properties can be explicited further by considering
the distribution of translational kinetic energies released.33,34

Expanding the vibrational density in the integral of eq 5 leads
to the well-known relation Pt(E,εt) ∝ εt

2/3 exp (-εt/kBTµ) between
the translational KER distribution and the microcanonical
temperature Tµ )(∂ ln Ωn/kB∂E)-1 of the product cluster. This

relation was tested against the true microcanonical temperature
computed by independent simulations in small neutral and
cationic argon clusters.34 In particular, it was suggested to correct
for finite size and angular momentum effects in the expansion,
replacing the previous exponential form by34

in which C denotes the heat capacity of the cluster. We have
calculated the microcanonical temperature Tµ(E) for the Ne13

cluster by direct numerical differentiation of the vibrational
density of states, for both the quantum and classical systems.
Distributions of translational kinetic energies released by the
evaporation from Ne14 have also been calculated from phase
space theory, using eq 5 above. To facilitate the interpretation
of the results, quantum effects have only been included in the
vibrational densities, and the angular momentum variables were
treated classically. For each calculation at fixed excess energy,
the KER distribution was fitted using the previous expression
of eq 21, using the known value for Λ and assuming C ) (3n
- 6)kB. The caloric curves Tµ

fit(E) extracted from this numerical
procedure are shown in Figure 8 and compared with the
microcanonical equilibrium temperatures. For the classical
cluster, the present results are consistent with our previous study
on argon clusters34 and illustrate that the combination of finite-
size and angular momentum corrections in eq 21 further improve
the agreement between the microcanonical temperature and the
KER-extracted value. The error in temperature determination
is about 10% and is maximum near the melting energy range.

The microcanonical caloric curve of the quantum cluster is
significantly affected by quantum fluctuations in the vibrational
density of states at low energy, which blur any signature of the
solidlike-liquidlike phase change. Much of this noise is
magnified by the numerical derivative procedure involved in
Tµ(E). The temperature obtained from adjusting the translational
KER distribution follows a much smoother behavior, which even

Figure 6. Predictions of phase space theory for the unimolecular
evaporation of Ne14 into Ne13 + Ne as a function of canonical
temperature, assuming quantum or classical treatments, and harmonic
or anharmonic vibrational state densities: (a) evaporation rates; (b)
average kinetic energy (translational + rotational) released; (c) average
angular momentum of the product cluster.

Figure 7. Left panel: distribution of vibrational energy remaining in
the Ne13 product, for a parent Ne14 thermalized at 10 K. Right panel:
thermal distribution of internal energy in Ne14 at 10 K. For both panels,
the results obtained using quantum and classical treatments are shown.
For both panels, energies are measured relative to the zero-point value.

Pt(E,εt) ∝ [1 - exp(- εt
2/3

ΛkBTµ
)][1 -

kB

2C( εt

kBTµ
)2] ×

exp(- εt

kBTµ
) (21)
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allows the detection of a melting region at excess energies in
the 100-150 cm-1 range, associated with a temperature of about
8 K. Interestingly, the inflection in the quantum caloric curve
is strong enough for a backbending to emerge, whereas the
microcanonical heat capacity remains positive in the classical
cluster. This confirms the suggestion that quantum delocalization
might enhance backbending effects in atomic clusters.80

The present agreement between the microcanonical caloric
curve and the temperature inferred from the KER distributions
might further improve by adjusting the heat capacity C to more
realistic values in eq 21, especially in quantum systems where
C may be quite low. In the presence of a backbending, C might
also diverge, making the fitting procedure useless. However,
the simple approximation of considering C as a constant already
provides an original but efficient method to determine practical
caloric curves and to clear them from some inherent quantum
noise.

D. Larger Clusters. Owing to an accumulation of low-
frequency modes, the magnitude of quantum effects is expected
to decrease with increasing cluster size. We have repeated the
previous PST calculations for two clusters whose unimolecular
dissociation products correspond to the next icosahedral magic
series, namely, Ne56 and Ne148. For these systems, only harmonic
vibrational densities have been considered for simplicity.
Sampling the energy landscape of these clusters remains
feasible;50 however, in the absence of any reference calculation
for the quantum systems, we have not dared estimating
anharmonic coefficients. The results of this section are thus
aimed at providing trends.

The dissociation rate, average KER, and angular momentum
product are represented in Figure 9 as a function of temperature
in the parent cluster, for the three cluster sizes. Both classical
and quantum properties are shown, except for the average KER
where the classical curves, which give similar straight lines,39

are omitted for clarity. Average properties are easier to discuss
first, using simple analytic results available for classical
harmonic clusters. The microcanonical KER for such systems
varies with excess energy as 〈εtr〉(E) ≈ 2(E - E0)/(3n - 7),
where n is the size of the parent cluster.39,81 This leads to a
simple expression in the canonical ensemble, namely 〈εtr〉(T) )
2[(3n - 3)kBT - E0]/(3n - 7). Hence the slope of the KER
with temperature increases slowly with increasing n and
converges to 2kB, which is close to the observed behavior in
Figure 9 at high temperatures T > 10 K. Similarly, from eq 19

the microcanonically averaged angular momentum product
varies for an harmonic classical cluster as 〈Jr〉(E) ≈
[(E - E0)/B]1/2 at low energies, leading to a (kBT/B)1/2 behavior
as a function of temperature. This explains how the different
curves in Figure 9c scale with cluster size, since in a first
approximation B(n) ∝ n-5/3. The quantum properties follow
comparable variations. The temperatures at which the quantum
and classical averages meet decrease with increasing cluster size.
This corroborates the appearance of many softer vibrational
modes, which makes larger clusters behaving in a more classical
fashion at fixed temperature.

Finally, the dissociation rates are far more affected by the
classical or quantum nature of the clusters than by their size. In
particular, as was already the case for the Ne14 system but in
contrast with average properties, the classical and quantum rates
do not converge to each other at high temperatures. Since the
rotational densities of states have the same magnitude, this
discrepancy must be caused by uncertainties in the absolute
densities of states, especially acute due to the different methods
used to calculate them in classical and quantum systems. These
differences are less marked for Ne148 and Ne56 but remain clearly

Figure 8. Microcanonical temperature of Ne13 as a function of its
excess energy, obtained from the vibrational density of states (solid
and dashed lines), or from fitting the translational kinetic energy released
distribution to a modified Arrhenius form (symbols).

Figure 9. Predictions of phase space theory for the unimolecular
evaporation of Ne56 and Ne148 as a function of canonical temperature,
assuming quantum or classical treatments, and harmonic vibrational
state densities: (a) evaporation rates; (b) average kinetic energy
(translational + rotational) released; (c) average angular momentum
of the product cluster. Solid lines refer to quantum systems, whereas
dashed lines, when present, refer to classical systems. Those have been
omitted from panel (b) for clarity.
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visible after the crossing of all the corresponding curves near
T ) 10 K. More remarkable is the qualitative influence of
quantum effects on the nontrivial variations of the dissociation
rates that often show inflections at low temperatures even though
both parent and product clusters are described as sets of
harmonic oscillators. The complex variations and temperature-
dependent ordering between the dissociation rates found for
quantum systems cannot be explained by simple scaling
arguments, and this conclusion is also valid for classical systems,
despite the possible shift in the quantum versus classical values.
Absolute rates thus depend on the precise details of both parent
and product clusters, especially on the distributions of vibrational
frequencies. They are also affected by the different symmetry
factors in the parent, which differ between Ne148, Ne56, and Ne14.
Following the conclusions of Weerasinghe and Amar,39 average
properties and equilibrium distributions appear as much robust
quantities to separate the relative influences of the various
parameters entering these calculations.

E. Discussion. The difficulty in interpreting the energy-
resolved results lie in the qualitatively different vibrational
distributions, which exhibit strong (nonmonotonic) fluctuations
in quantum systems but display smooth and always increasing
variations in classical systems. In addition, only a few vibrational
states are allowed in quantum clusters until their total energy
is sufficient. Hence the evaporation products may be emitted
vibrationally cold, and even nearly frozen, but are still capable
of carrying some significant momenta. The picture emerging
in the canonical ensemble strongly contrasts with the previous
microcanonical one, because the parent excess energy distribu-
tion is itself much narrower at low energies, thus restoring a
more intuitive behavior in the dissociation observables.

So far we have not discussed the influence of quantum
tunneling on the computed properties. This phenomenon enters
the theory only via the rotational densities of states but even
then has a minor contribution. All calculations for the quantum
systems have been repeated by canceling the tunneling prob-
ability �, and the results appear indistinguishable. Furthermore,
using the classical rotational densities together with quantum
vibrational densities leaves the rate constants and kinetic energy
release distributions essentially unchanged. Angular momentum
observables are only affected due to their discrete character in
units of p, becoming slightly lower. Looking at the shape of
the rotational density in Figure 3, this result should not be taken
as a surprise. Except for the absolute rate constants, the statistical
properties for such rather large systems should be mainly
controlled by the number of rotational degrees of freedom via
power law expressions,90 the centrifugal energies being only
small magnitude corrections. Tunneling through the centrifugal
barrier is itself a rare event for the present clusters but could be
enhanced in smaller systems involving lighter species. In this
case the range of angular momenta would be reduced, the phase
integral would be significantly higher, and the combined effect
on the rotational density might become visible on the statistical
properties.

IV. Summary and Conclusions

Neon clusters have a particular status as weakly bound
systems exhibitting a behavior intermediate between fully
quantum (as in helium) or mainly classical (as in heavy rare
gases). This status makes them suitable for fundamental studies
on the multidimensional vibrational dynamics using ideas from
the semiclassical realm. In the present work, the unimolecular
dissociation of neon clusters containing 14, 56, and 148 atoms
has been investigated in the framework of phase space theory

in its orbiting transition state version, paying a particular
attention to the role of quantum effects. The vibrational densities
of states have been calculated for these clusters and their
dissociation products using dedicated simulation schemes based
on Monte Carlo methods for classical systems, and the
superposition approximation in the quantum case. Full anhar-
monicities have been included in smaller clusters. Semiclassical
discretization of angular momentum, as well as quantum
tunneling through the centrifugal barrier, were found to have
only a limited effect on most properties, whereas the quantum
description of vibrational states is crucial in determining the
energy- and temperature-dependent properties.

Our work confirms the previous conclusions of Weerasinghe
and Amar39 about the possibility of using dissociation observ-
ables as a way to acess thermodynamical equilibrium properties,
even for probing possible phase changes. The depression in the
melting point of Ne13 due to quantum effects, for instance, was
found to have a quantitative signature on the average KER,
product angular momenta, and even the rate constant. Note,
however, that the latter is much harder to interpret in general
since it involves the parent and product properties in equal
importance. Combinations of backbendings in the vibrational
state densities of both the parent and product could well lead
to complex, nonmonotonic variations of the microcanonical rate
constant with increasing energy.

Quantization of vibrations scrambles the relation between
energy E and microcanonical temperature Tµ. However, when
the translational KER distribution is used to estimate Tµ, much
of these fluctuations are washed out from the fitting procedure,
and a smoother caloric curve emerges. In particular, and contrary
to the classical case, the melting transition occurs in the quantum
Ne13 with a clear backbending in the microcanonical temperature
extracted from the KER distribution. Larger systems should
behave more and more classically due to an accumulation of
low-frequency modes, and backbendings should be seen even
easier in Ne55 and Ne147, quantum fluctuations being significant
on the microcanonical curves only at very low energies.

For the present systems, the magnitude of quantum effects
lies beyond the capabilities of most corrective approaches based
on Pitzer-Gwinn approximations and alike. The superposition
approximation used here to estimate vibrational densities should
itself become exceedingly crude for dealing with lighter
elements such as hydrogen. Microcanonical path-integral tech-
niques might then become the method of choice.

It would be useful to apply the methods developed in this
article to ionized neon clusters, for their greater experimental
relevance in mass spectrometry studies.91 Cationic rare-gas
clusters display a much richer structural, dynamical, and
thermodynamical behavior than their neutral counterparts, due
to the formation of a covalent ionic core solvated by neutral
atoms bound to the core via polarization and dispersion
forces.92-96 The stronger binding in these clusters make them
more classical, but the number of weak bonds increases quickly
with cluster size. The resulting species offer an intermediate
situation with intriguing properties, which might be more
amenable to successful modeling by the aforementioned quan-
tum corrective approaches to classical treatments.

The main limitation of the results obtained here is their lack
of support from explicit, atomistic simulation of the evaporation
process. Among the various methods quoted in the introductory
section, several of them stand out as promising candidates to
address the long-time quantum dynamics of many-body systems
on highly anharmonic energy landscapes. In the near future,
further methodological improvements, together with advances
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in computer algorithms and hardware, should enable fruitful
comparison with the present findings.
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Appendix: Rotational Constants in the Superposition
Approximation

In the superposition approximation, the effective rotational
constant is obtained from the spherical average of the principal
momenta of inertia of an effective inertia tensor I(T):

where Z(T) ) ΣRSn
(R)Zn

(R)(T) is the total partition function of the
system and 〈IR〉(T) is the thermally averaged inertia tensor of
isomer R at temperature T. The quantum partition function is
the Laplace transform of the density of states Ωn

(R)(E), and in
the classical case we use an anharmonic perturbative expansion
at first order.84

The 3 × 3 matrix 〈IR〉(T) is calculated at the harmonic level.
The transformation from Cartesian coordinates R ) RR + δR
to normal modes Q around the equilibrium geometry RR of
isomer R involves the orthogonal matrix W such that δR )
WQ. Upon this transformation each term of the IR tensor is
expressed as a a linear combination of QiQj products; hence
〈IR〉(T) is simply obtained from 〈QiQj〉 averages. Assuming
harmonic wave functions yields

where δij stands for the Kronecker symbol. The classical
expression is straightforwardly obtained as

The T f 0 limit of eq 23 also leads to a zero-point correction
to the effective inertia tensor, which is sufficient to reduce the
rotational constant by about 10% (see Figure 2).
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